Management of Multiple Data Streams for *In Situ* Remediation

2022 International Conference on Environmental Data Management September 21-22, 2022 – Troutdale, Oregon

Presented by Kelly Dubois

Overview

SANBORN

HEAD

- Project
- In Situ Chemical Oxidation (ISCO)
- Site
- Data Streams
- Visualization Demo
- Outcomes

Project

Develop a workflow that enables the project team to provide adaptive site management practices to dynamically assess system performance and tune the injection system to meet clean-up objectives.

Forward thinking client and regulators were ready for this approach!

- Needed a coherent, data-centric system to scrub and manage the data
- System needed to accommodate, manage (via code where possible), and integrate multiple data streams
- Careful consideration of what data to include

What is ISCO?

In Situ Chemical Oxidation

- Injection of an oxidant (sodium permanganate)
- Chemical reaction occurs destroying the contamination (TCE)
- Extraction of groundwater to help draw the permanganate through the subsurface
- Reinjection of permanganate to the subsurface
- Strings of ORP sensors to monitor the progress of the permanganate

Project

- Multi-National Effort
 - Site in France
 - Sanborn Head in New England
 - 6-hour time difference
 - Project Team and DM&V Team
 - Local French contractor
 - Language and culture differences
 - Drillers from UK
 - ISCO system from Netherlands
 - ORP sensors/monitoring from USA
 - Laboratory services from French lab
 - Consulted with University of Guelph in Canada

- Multiple Data Collection Methods
 - Verbal over Teams call
 - Excel field forms
 - Water level transducers
 - ORP sensors
 - Field screening measurements
 - ISCO system
 - Laboratory data

SANBORN || HEA

Data Technologies in Use

- EQuIS
- Microsoft SQL
 Server
- SharePoint
- Python
- R

- ArcGIS
- EVS
- Power Bl

• Excel

SANBORN

HEAD

Site

Site

SANBORN

Subsurface Network

- 193 injection/extraction wells
 - 17 rows (A through Q)
- 62 MWs, including 12 CMTs
- 44 *in situ* remote ORP sensor strings
 - 548 individual sensors

HEAD

Site

ISCO Surface System

- Closed, recirculatory permanganate injection/extraction system
- Remotely monitored and operated; periodically operated without personnel on-site
- Set up on trolleys to move from one row to the next as clean-up objectives are met

Data Streams

- ISCO System
 - 5-minute recording frequency
 - No API available
 - ISCO system sends csv files to SharePoint every 6 hours
 - Python transforms and pushes the data into on-premise SQL database
- ORP Sensors
 - Hourly measurements
 - API via cell
 - Automatic daily API call via R script. API provides data in JSON format, R script converts to csv and appends to master file which is then consumed by additional R scripts, ArcGIS, EVS, and Power BI
- Water Level Transducers
 - 15-minute recording frequency
 - Manually csv files downloaded at wellhead, uploaded to SharePoint
 - Processed in R and master csv file is then consumed by additional R scripts, ArcGIS, EVS, and Power BI

Data Streams

- Daily / Weekly Groundwater Field Measurements
 - Water levels
 - Colorimetric Permanganate screening
 - pH, ORP, Specific Conductivity, Temp
 - Excel field forms with cell validation
 - Delivered via SharePoint
 - Processed via Python uploaded to SQL
- Quarterly Groundwater and Annual Soil Sampling
 - French lab EDDs in German format
 - Processed manually due to persistent inconsistencies in the EDDs and uploaded to EQuIS
- Lithology

SANBORN

- From coring/well installation
- Logged Excel field forms
- Data consumed in EVS and Power BI

⊿ A	В	С	D	F	G	К		L		М	N	0	Р	Q	U		х	Y		Z		AA		AC	
2		ılı											Project Nu	umber:							V	Well:		Z-71-P5	
3 S/	3 SANBORN HEAD						Project Name:												Re	Ref Elev: 3		5.62 m NGF			
4	4					Project Location:															Scree	en range:	16.	5 - 16.65 m ref	
8	Jour	Mois	tois Année Heure Minute Niveau d'eau piézométrique l'ouvrage d'éch		Type d'échantillor	Ligne	pH Conductivit (S.U.) spécifique		t Chrom	e	Potentiel d'oxydo-	Lecture du Fac DR900 Di		Facteur d	e Perma	Permanganate calculé (mg/L)		Commentaires							
10	ш	mm	6666	нн	мм	m		<u>(m N</u>	GF)	(m/repère) m	In-situ ou	A & B, C, or	SU	(μS/cm) uS/cm	mg/L	réc	duction (mV) mV				= Lecture 0.895 *	e du DR900 * Facteur de	Commenta	aires complet, ne pas	
11	27	01	2021	16	42	= 11	.87	23.7	'5	▲ 17.22	In-Situ	A & B	6.82	- 1566.00		-	-139.20	- 1.1	4	1.00	di	1.02	pern	nanganate filtré	
13							_									-			+				presen	e of fluoresceine	
14	03	02	2021	10	40) = 12.05		23.57 🔺 1		▲ 17.22	In-Situ	A & B	6 .96	■ 1586.00		_	-80.30	6.40		1.00 5.73		5.73	presence of fluoresceine		
15	10	02	2021	11	59	▲ 12.13		23.4	23.49 🔺 17.22		In-Situ	A & B	— 7.47	— 1594.00		-	-61.80	0 = 4.70		1.00		4.21		permanganate filtré presence of fluoresceine	
	17	02	2021	10	58	- 11.98		23.6	3.64		In-Situ	A & B	~ 7.70	- 1589.00		-	46.20	= 5.70 -		1.00 5.10		5.10	permanganate filtré presence of fluoresceine		
10	25	02	2021	11	45	▲ 12	.37	23.2	!5	▲ 17.22	In-Situ	A & B	7.38	- 1560.00		_	321.20	— 6.3	2	1.00		5.66	pern	nanganate filtré	
17		D																					presen		
18 1 3	CP-Na PZ-10	ime S 071	ampler PJP Sample R	Prop CP PZ-1071	x	n .	Y	Z 35.05		L		м	N	0	F	Q SUB San	mle	3	1	0		w			
19 4	Top B (m)	ottom SM (m) #	P Date	Time Pen (m)	Rec (m)	Top (m)	Bot (m)	SUB SMP		Comments		General Lithology	Geo U	nit PID	Analyze/ Hold	Mobile Vial ID	DUP Vial ID	MAE Vial ID	SMP Deptl	h Extrac	tion Fix Lab SMP	Phy Para Testing	QA/QC	SMP Comment	
5	0	0.15 1	2/10	8:00 0	0.15	0 15	0.15	A		Concrete slab w/	brick	FILL	Fill		NO SMP								-		
	1	2.5 3	2/10	8:35 1.5	1.5	0.15	1.05	A	Fre	equent thin plastic f	fragments	FILL	Fill		ANALYZE				ш					ollected from fill - note no	
20 7								-	Blac	k mineralization. O	range-gray							Lith	III D		PZ-1	.071			
8	1	2.5 3	2/10	8:35 1.5	1.5	1.05	2.5	В	mot	ttling significant bel Dry/dessicated 1.95	low 1.75m i-2.20m.	S&C	Silt&C	lay	NO SMP		-			0	FI				
9	2.5	4 4	2/10	9:30 1.5	1.4	2.5	2.8	A	Slight	t orange oxidation. nodules.	White chalk	S&C	Silt&C	lay	NO SMP		-		-		s	&C			
10	2.5	4 4	2/10	9:30 1.5	1.4	2.8	3.35	В	Slight of fragm	orange oxidation. Fr nents. Grades finer	requent shell with depth.	S&G	Silt&C	lay	NO SMP		-		-		S/	AND			
N	N O		P	P Q _		3.35	4	с	Promin miner	nent orange-gray m ralization. Breaks al planes.	ottling. Black long vertical	S&C	Silt&C	lay	ANALYZE				-		G	RAVEL		etals sample collected at 3	
EXPLORA	PLORATION NAME:		P	PZ-107I		4	4.75	A	Orange t mine	e-gray mottling to 4 to lt. gray 4.3-4.75n ralization. Whitech	1.3m, dk. Gray n. Black alk nodules.	S&C	Silt&C	lay	NO SMP		-				S S	iG Soft Sand	stone		
Hard Sands Soft Sands	stone	5.89 6.8 7	0.8 7 75	0.2	_	4.75	5.5	в	Grad Orange Gravel	des sandier, looser e oxidation increase layer 5.1m. White	with depth. es with depth. chalk noduels	SILTY SAND	Silt&C	lay	NO SMP		-		-		So M	oft Sandst I Hard San	one dstone		
Soft Sands Soft Sands	stone stone	7.5 8	8 8.5	7.8 8.3		5.5	5.89	A	Slig withde	ht orange oxidatior epth.Blackmineralis like filaments	1, increase zation ("web")	SILTY SAND	Silt&C	lay	NO SMP		-				Ha	ard Stand	stone		
Hard Sands SAND	stone	8.5 9.25	9.25 9.6	9.05	5	5.89	6.8	в	Orang Orang	e oxidized. Black mi se clay laminations : apart	ineralization. spaced~1cm	S&C	Silt&C	lay	ANALYZE		_			41.3	Te	est 12		etals sample collected at6	
SAND)	9.6	10	9.8		6.8	7	с	Orai	nge oxidized, mod. 1	Weathered.	Hard Sandstone	Shallow I	Unsat	NO SMP					51.3	- Horz Jo	oints			
S&G SILTY SA	AND	10	10.75	10.3	3				Vary	ving hardness throu tod in unconsolidate	ighout.VOC									51.9	- Horz C	rack			
SILTY SA	AND	11	11.5	11.3		7	7.5	A	red- Moder:	orange staining. Vu	gs present.	Soft Sandstone	Shallow	Unsat	ANALYZE	100	-			33.1	Diag Jo	int			
SAND		11.5	12	11.8	3					7.5-7.8m.								=			∕ Diag Cr	ack			
SILTY SA	AND	12.15	12.15	12.1		7.5	8	В	Same	as above, broken in sampling	n'addicional	Soft Sandstone	Shallow	Unsat	ANALYZE	101				74.6	+ Vert Jo	int			
SILTY SA	AND	13	13.5	13.3	3	8	8.5	с	Same	as above, broken fo sampling	or additional	Soft Sandstone	Shallow	Unsat	ANALYZE	102	-	8		49.1	+ Vert Cr	ack			
SILTY SA	AND	13.5	14	13.8		8.5	9.25	A	Sl. Or	ange oxidation. Unc 9.02-9.12m. Sl. Wea	onsolidated thered.	Hard Sandstone	e Shallow	Unsat	ANALYZE	103					× Extrem	e Fracture			
Hard Sands	AND stone	14	14.5	14.3	2															50.7	- FILL				
S&G		14.9	15.75	15.3	3													I		50.7	- SAND				
SILTY SA	AND	15.75	16	15.8	3															50.7	- SILTYS	AND			
V Soft Sand	dstone	16	16.5	16.3	3															51.2	- GRAVE	L			
V Soft Sand	dstone	10.5	17.5	10.8	ř –													–		50.4	- S&G				
V Soft Sand	dstone	17.5	18	17.8	3															47.8	– V Soft S	Sandstone			
V Soft Sand	dstone	18	18.5	18.3																52.1	– Soft Sa	ndstone			
V Soft Sand	astone	18.5	10 5	18.8	<u>+</u>															42.3	- M Hard	d Sandstone			
Soft Sands	stone	19.5	20	19.8																				11	
					•																			11	

Visualizations

- R output example
- EVS 3D model
- Power BI dashboard

EVS Soil Permanganate and TCE Results

Takeaways

- A multi-faceted approach to data management and visualizations has allowed us to use adaptive site management, dynamically assess system performance, and tune the injection system to meet clean-up objectives.
- Careful consideration in the early stages of the project of which data to NOT include in the data processing was critical. By including more data, rather than less, we were able to have the data required to troubleshoot unanticipated problems when they occurred later in the project.
- An enterprise approach to data management system design has allowed us to more easily repurpose various components for other projects.
- Sensor technology continues to become more accessible to our industry, allowing us to use real-time monitoring of surrogates to have more complete "digital twins" of the subsurface and thereby achieve better outcomes for our remediation programs.

Questions

Please contact us!

Kelly Dubois kdubois@sanbornhead.com

Rich Mechaber, PG rmechaber@sanbornhead.com

Sam Warner swarner@sanbornhead.com

Sean Murphy, PG smurphy@sanbornhead.com