

Mann Kendall Automation with Power BI

September 21, 2022

Mann-Kendall Trend Test

Mann-Kendall Trend Test - Overview

- Statistical test used to evaluate trends over time
 - Commonly used for groundwater contaminants
- Calculated by examining all possible pairs of measurements in the data set and scoring each pair as follows:
 - $z_k = 1$ when $y_t > y_{t'}$ Increasing
 - $z_k = 0$ when $y_t = y_{t'}$ No Trend
 - $z_k = -1$ when $y_t < y_{t'}$ Decreasing
- Sum of all z_k = Mann-Kendall Statistic (**S**)
 - Positive S suggests increasing trend

Mann-Kendall Trend Test - Overview

- Once the S value is calculated, probability (p) is quantified based on
 - n = number of samples
 - sd(s) = standard deviation of S
 - z = standardized Z-statistic

	А	В	С
	Sample No.	Sampling Date	Sulfate Conc.
1	Sample NO.	(yr.mon)	(ppm)
2	1	89.6	480
3	2	89.8	450
4	3	90.1	490
5	4	90.3	520
6	5	90.6	485
7	6	90.8	510
8	7	91.1	510
9	8	91.3	530
10	9	91.6	510
11	10	91.8	560
12	11	92.1	560
13	12	92.6	540
14	13	93.1	590
15	14	93.6	550
16	15	94.1	600
17	16	94.6	700
18	17	95.1	570
19	18	95.6	610
20	19	95.8	650
21	20	96.1	620
22	21	96.3	830
23	22	96.6	720
24	23	96.8	590

Example 17-6 United States Environmental Protection Agency (USEPA), 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. March.

В	С	D	E	F	G	н	1	J	к	L	м	N	0	P	Q	R	S	Т	U	V	W	х
	5	194		SD[S]	37.79		n	23		Z	5.107322		р	1.633787E-07								
	480	450	490	520	485	510	510	530	510	560	560	540	590	550	600	700	570	610	650	620	830	720
480		_																				
450	-1																					
490	1	1																				
520	1	1	1																			
485	1	1	-1	-1																		
510	1	. 1	1	-1	. 1																	
510	1	. 1	1	-1	. 1)															
530	1	. 1	1	1	. 1	1	l 1															
510			1000	ا.	100	(0 0	-1								_						
560	4	50 IS	less	thar	1480	1	1	1	1							_						
560		a a u a f	1			1	1	. 1	1	. 0						-						
540	U	nerer	ore,	the z	k van	ue p	1	. 1	1	-1	-1											
590	- F	or thi	6 00		1	1		. 1	1	1	. 1	1										
550		or uni	s pa	II IS -	1			1	1	-1	-1	1	-1									
700								1	1	1	1	1	1									
700	1	1	1	1	1			1	1	1	1	1	1									
570	1	1	1	1	. 1			1	1	1	1	1				-1						
650		. 1	1	1	. 1			1	1	1	1	1	1	1 1		-1	1	1				
620		1	1	1	. 1			1	1	1	1	1	1	1 1		-1	1	1	1			
820		1	1	1	1			1	1	1	1	1	1			1	1	1	-1	1		
720	1	1	1	1	1		1 1	1	1	1	1	1	1	L	1	1	1	1	1	1	-1	
590	1	1	1	1	1		1 1	1	1	1	1	1		1 1	-1	-1	1	-1	-1	-1	-1	-1
350	- 1		1		. 1			1		-	- 1	-		/		1	-	-1	-1	-1	-1	-1

Example 17-6 United States Environmental Protection Agency (USEPA), 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. March.

В	с	D	E	F	G	н	1	J	К	L	м	N	0	P	Q	R	S	т	U	V	w	x
	s	194		SD[S]	37.79		n	23		Z	5.107322		p	1.633787E-07								
	480	450	490	520	485	510	510	530	510	560	560	540	590	550	600	700	570	610	650	620	830	720
480																						
450	-1																					
490	1	1																				
520	1	1	1																			
485	1	1	-1	-1												_						
510	1	1	1	-1	1																	
510	1	1	1	-1	1	0																
530	1	1	1	1	1	1	1															
510	1	1	1	-1	1	0	0	-1														
560	1	1	1	1	1	1	1	1	1													
560	1	1	1	1	1	1	1	1	1	0												
540	1	1	1	1	1	1	1	1	1	-1	-1											
590	1	1	1	1	1	1	1	1	1	1	1	1										
550	1	1	1	1	1	1	1	1	1	-1	-1	1	-1									
600	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1								
700	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	. 1	L						
570	1	1	1	1	1	1	1	1	1	1	1	1	-1	. 1	-1	-1						
610	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	. 1	l -1	1					
650	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	. 1	-1	1	1				
620	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	-1	1	1	-1			
830	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1	1	1	1		
720	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	. 1	1	1	1	1	1	-1	
590	1	1	1	1	1	1	1	1	1	1	1	1	0	1	-1	-1	1	-1	-1	-1	-1	-1

Example 17-6 United States Environmental Protection Agency (USEPA), 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. March.

В	С	D	E	F	G	н	1	J	к	L	м	N	0	P		Q	R	S	т	U	V	w	х
	S	194		SD[S]	37.79		n	23		Z	5.107322		р	1.633	787E-07								
					▲																		
	480	450	490	520	485	510	510	530	510	560	560	540	590		550	600	700	570	610	650	620	830	720
480																							
450	-1																						
490	1	1							-					=									
520	1	1	1	L			-	- 11		1	8		V N										
485	1	1	-1	-1			SD S	= 1	n(n-	1)(2n+	-5)->	$t_1 (t_2 - t_3)$	1 (2t) + 5										
510	1	1	1	-1	1		L	J 18			i=1	, C	\mathbf{X}										
510	1	1	1	-1	1	d			L					-									
530	1	1	1	. 1	1	1	1																
510	1	1	1	-1	1	0	0	-1															
560	1	1	1	1	1	1	1	1	1														
560	1	1	1	1	1	1	1	. 1	1	0)												
540	1	1	1	. 1	1	1	1	. 1	1	-1	-1												
590	1	1	1	. 1	1	1	1	1	1	1	. 1	1											
550	1	1	1	. 1	1	1	1	. 1	1	-1	-1	1	-1										
600	1	1	1	1	1	1	1	1	1	1	. 1	1	1		1								
700	1	1	1	1	1	1	1	1	1	1	. 1	1	1		1	1	L						
570	1	1	1	1	1	1	1	. 1	1	1	. 1	1	-1		1	-1	-1						
610	1	1	1	. 1	1	1	1	. 1	1	1	. 1	1	1		1	1	-1	1					
650	1	1	1	. 1	1	1	1	1	1	1	. 1	1	1		1	1	-1	1	1				
620	1	1	1	1	1	1	1	1	1	1	. 1	1	1		1	1	-1	1	1	-1			
830	1	1	1	1	1	1	1	1	1	1	. 1	1	1		1	1	1	1	1	1	1		
720	1	1	1	1	1	1	1	1	1	1	. 1	1	1		1	1	1	1	1	1	1	-1	
590	1	1	1	1	1	1	1	. 1	1	1	. 1	1	0		1	-1	-1	1	-1	-1	-1	-1	-1

Example 17-6 United States Environmental Protection Agency (USEPA), 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. March.

В	С	D	E	F	G	н	1 I -	J	К	L	м	N	0	P	Q	R	S	Т	U	v	w	X
	s	194		SD[S]	37.79		n	23		Z	5.107322		p	1.633787E-)7							
											•											
	480	450	490	520	485	510	510	530	510	560	560	540	590	5	60 60	0 700	570	610	650	620	830	720
480																						
450	-1																					
490	1	1																				
520	1	1	1									1 1										
485	1	1	-1	-1							Z = 0.5	S -1	SD S									
510	1	1	1	-1	1						N.	1 /										
510	1	1	1	-1	1	0																
530	1	1	1	1	1	1	. 1															
510	1	1	1	-1	1	0	0	-1														
560	1	1	1	1	1	1	. 1	1	1													
560	1	1	1	1	1	1	. 1	1	1	0)											
540	1	1	1	1	1	1	. 1	. 1	1	-1	-1											
590	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	L									
550	1	1	1	1	1	1	. 1	. 1	1	-1	-1	1	-1									
600	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	1 1		1							
700	1	1	1	1	1	1	. 1	1	1	1	1	1	1		1	1						
570	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	-1		1 .	1 -1	L					
610	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	1 1		1	1 -1	L 1					
650	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	1 1		1	1 -1	ι 1	. 1				
620	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	1 1		1	1 -1	ι 1	. 1	-1			
830	1	1	1	1	1	1	. 1	1	1	1	1	1	1		1	1 1	L 1	. 1	1	1		
720	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	1		1	1 1	L 1	. 1	1	1	-1	
590	1	1	1	1	1	1	. 1	. 1	1	1	. 1	1	L 0		1 .	1 -1	L 1	-1	-1	-1	-1	-1

Example 17-6 United States Environmental Protection Agency (USEPA), 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. March.

R-Based Approach to Automating Mann-Kendall

Initial Mann Kendall Automation Script

Initial Mann Kendall Automation Approach Using R

TABLE X-X SUMMARY OF MANN-KENDALL TREND ANALYSIS RESULTS																
SUMMARY OF MANN-KENDALL TREND ANALYSIS RESULTS Project Name, Project City, Project State																
	Project Name, Project State															
	Well Depth Interval 1,1,1-TCA Benzene cis-1,2-DCE Naphthalene PCE TCE Vinvl chloride Total VOCs 1.4-Dioxane Dissolved Arsenic Total Arsenic PFHxS PFNA PFOS PFOA															
Well	Depth Interval	1,1,1-TCA	Benzene	cis-1,2-DCE	Naphthalene	PCE	TCE	Vinyl chloride	Total VOCs	1,4-Dioxane	Dissolved Arsenic	Total Arsenic	PFHxS	PFNA	PFOS	PFOA
							On-Prop	erty								
MW-1	Shallow	BRL	BRL		Decreasing	BRL	BRL	BRL	Decreasing			Decreasing#	No Trend	BRL	No Trend#	No Trend#
MW-2	Shallow	BRL	BRL	BRL	BRL	Decreasing	BRL	BRL	Decreasing	BRL			Stable#	BRL	Stable#	Stable#
MW-3	Intermediate									No Trend			No Trend	BRL	Stable	Stable
MW-4	Shallow	BRL	Decreasing	No Trend	No Trend			BRL	No Trend	No Trend#		No Trend#				
MW-5	Intermediate	BRL	Stable	Prob Decreasing	BRL	BRL	Decreasing	BRL	Prob Decreasing	No Trend#		No Trend#				
MW-6	Intermediate	Decreasing	Stable#	Decreasing	BRL	Decreasing	Decreasing	Prob Increasing#	Decreasing	Decreasing#		Decreasing	Decreasing#	BRL	Increasing#	Stable#
MW-7	Shallow	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL						
MW-8	Shallow	BRL	No Trend	No Trend	BRL	BRL	BRL	BRL	Prob Decreasing	Decreasing		Decreasing#				
						0	ff-Property Mon	itoring Wells								
MW-9	Deep	BRL	BRL	No Trend	BRL	BRL	BRL	BRL	No Trend	Prob Decreasing#		BRL	BRL	BRL	Stable	No Trend
MW-10	Bedrock											Decreasing				
MW-11	Shallow											Stable#		Stable	Stable#	Stable#
MW-12	Intermediate									Prob Decreasing						
MW-13	Deep									Stable#		Stable#	BRL	BRL	BRL	BRL
MW-14	Intermediate	BRL		Decreasing	BRL		BRL	BRL	Decreasing	Decreasing#		No Trend	Stable#	BRL	No Trend#	No Trend#
MW-15	Deep	BRL	Decreasing	Decreasing	BRL	BRL	Decreasing	Increasing#	Decreasing	Decreasing#	Increasing#	Increasing#	Decreasing	BRL	Decreasing	Decreasing#
MW-16	Intermediate	BRL	BRL	Decreasing	BRL	BRL	Decreasing	Prob Decreasing	Decreasing	Decreasing		BRL	Stable	BRL	Stable#	Stable#
MW-17	Shallow									Decreasing		Decreasing				
		_		-	-	Off-Pro	perty Former Dri	nking Water Well	5				-	_		
MW-18	Bedrock		Stable#	Stable			Prob Decreasing	BRL	No Trend	Stable#						
MW-19	Bedrock	BRL		Decreasing		BRL		BRL	Decreasing	Stable#						
MW-20	Bedrock									Stable						
MW-21	Bedrock									No Trend#						
MW-22	Bedrock									BRL						
MW-23	Bedrock									No Trend#						
MW-24	Bedrock									No Trend#						
MW-25	Bedrock	BRL		No Trend#	BRL	BRL	No Trend		Stable	Stable#	No Trend#	No Trend#				
MW-26	Bedrock	BRL	BRL	No Trend	BRL	BRL		BRL	No Trend	Stable#						
MW-27	Bedrock									No Trend						

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene; VOCs = Volatile Organic Compounds;

PFHxS = Perfluorohexane sulfonic acid; PFOS = Perfluorooctane sulfonic acid (PFOS); PFOA = Perfluorooctanoic acid (PFOA); PFAS = Perfluorononanoic acid

= 2021 exceedance of the applicable Regulatory Standard

The MK calculation assumes half the reporting limit if a sample is non-detect.

BRL = Below Reporting Limit, most of the historical data is below laboratory reporting limit

---- Mann Kendall analysis not performed.
Decreasing Green shading indicates a decreasing

Green shading indicates a decreasing or probably decreasing trend, or a stable/no trend with a current concentration below the Regulatory Standard, or results BRL.

Stable# Yellow shading indicates a stable/no trend with a current concentration above the Regulatory Standard.

creasing# Orange shading indicates an increasing trend.

Initial Mann Kendall Automation Approach Using R

Analyte	Trend	s	Confidence Factor	cov	NHDES AGQS
Benzene	Stable	8	89.8%	0.77	5
Cis-1,2-dichloroethene	Prob Decreasing	-9	93.2%	1.16	70
Trichloroethene	Decreasing	-14	99.5%	0.94	5
Total VOCs	Prob Decreasing	-9	93.2%	0.62	NA
1,4-dioxane, Total	No Trend#	з	64.0%	0.55	0.32
Arsenic, Total	No Trend#	7	86.4%	0.16	5

Initial Mann Kendall Automation Approach Using R

Scaling of R-Approach

- Deployed across multiple projects
- Generalized Script
- Posted to W&C Github

Transition to a Dynamic Display in Power Bl

Automating Mann-Kendall with Power BI

- allowed the project team to:
 - Review updated trends in real time
 - Evaluate the impacts of
 - Outliers
 - Different time frames

Measures allowed dynamic recalculations

Chemical Name		MW-11R	MW-12	MW-14	MW-15	MW-19	MW-21	MW-22	MW-23	MW-24	MW-25R	MW-28S	MW-29D	Location Type \checkmark
1,1,1,2-Tetrachloroethane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Monitoring Well
1,1,1-Trichloroethane		N/A	N/A	N/A	N/A	N/A	No Trend	N/A	N/A	N/A	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,1,2-Trichloro-1,2,2-trifluoroethane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,1,2-Trichloroethane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,1-Dichloroethane		N/A	N/A	N/A	N/A	N/A	No Trend	N/A	N/A	N/A	N/A	N/A	No Trend	Abandoned V
1,1-Dichloroethene		N/A	N/A	N/A	N/A	Stable	No Trend	N/A	N/A	N/A	Decreasing	N/A	No Trend	False
1,1-Dichloropropene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1000
1,2,3-Trichlorobenzene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,2,3-Trichloropropane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Well ~
1,2,4,5-Tetramethylbenzene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,2,4-Trichlorobenzene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Multiple selections \checkmark
1,2-Dibromo-3-Chloropropane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,2-Dichlorobenzene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Chem. Classification 🗸
1,2-Dichloroethane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	No Trend	VOC
1,2-Dichloroethene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	000
1,2-Dichloropropane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,3-Butadiene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,3-Dichlorobenzene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Chemical Name 🛛 🗸 🗸
1,3-Dichloropropane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	alpha -Pinene
1,3-Dichloropropene (total)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1112 Tetrachloroothana
1,4-Dichlorobenzene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1,4-Dioxane	ng	No Trend	N/A	N/A	N/A	Decreasing	N/A	N/A	N/A	Decreasing	Potentially Increasing	N/A	N/A	1,1,1-Trichloroethane
Carbon Tetrachloride		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	 1,1,2,2-Tetrachloroethane
Chlorobenzene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1,1,2-Trichloro-1,2,2-trifluor
Chloroethane		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.1.2-Trichloroethane
Chloroform		N/A	N/A	N/A	N/A	N/A	N/A	Stable	N/A	N/A	N/A	N/A	N/A	11-Dichloroethane
cis-1,2-Dichloroethene	y Increasing	Decreasing	N/A	N/A	N/A	Decreasing	No Trend	N/A	N/A	No Trend	Decreasing	N/A	No Trend	
Methylene Chloride		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	 1,1-Dichloroethene
Tetrachloroethene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	 1,1-Dichloropropene
trans-1,2-Dichloroethylene		Stable	N/A	N/A	N/A	Decreasing	No Trend	N/A	N/A	No Trend	Decreasing	N/A	No Trend	1,2,3-Trichlorobenzene
trans-1,3-Dichloropropene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	 1,2,3-Trichloropropane
trans-1,4-Dichloro-2-butene		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1245-Tetramethylbenzene
Trichloroethene		Potentially Decreasing	N/A	N/A	N/A	Decreasing	No Trend	No Trend	N/A	Potentially Decreasing	Potentially Decreasing	N/A	Potentiall	1.2.4 Trichlorobonzono
Vinyl acetate		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Vinyl Chloride		No Trend	N/A	N/A	N/A	No Trend	No Trend	N/A	N/A	Increasing	Increasing	N/A	No Trend	✓ 1,2-Dibromo-3-Chloroprop
<								_					>	□ 1.2-Dibromoethan \[] []

1/1/2002 12/31/2021

1/1/2002 12/31/2021

Next Steps

- Scale Power BI dashboard to multi-project Azure SQL Database
- Build tools for data collection/validation/import.
- Add other analytical tools
 - Contaminants of concern summaries,
 - sampling optimization
 - Seasonal Mann-Kendall, etc.

Questions??

September 21, 2022

References

- United States Environmental Protection Agency (USEPA), 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. March.
- Maidment, David R. 1993. Handbook of Hydrology.

