

Automated Tools for Optimizing Groundwater Monitoring Programs

"Big Data" in Groundwater optimization

Victoria Ward

September 12, 2023

Objective

Reduce the number of wells routinely sampled at long-term monitoring Sites.

Automated Resources

- Data wrangling,
- Mann-Kendall trends,
- List of nearby wells screened at a similar interval,
- Summary Statistics that include comparison to regulatory standards,
- Extent of degradation, and
- Contour optimization.

Automated Data Wrangling with R and Python

Scripts were developed to:

query site databases,

convert results to consistent units,

select the most representative result across multiple analyses and field duplicates,

calculate temporal averages,

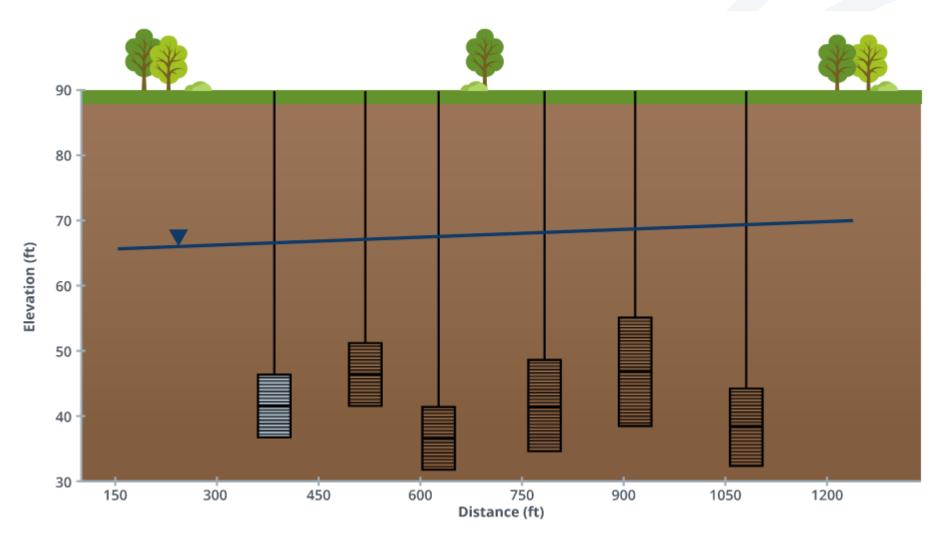
calculate totaled values (e.g., Total VOCs),

convert concentrations to molarity, and

generate an output file that facilitated use of Power BI for calculations and visuals.

Automated Data Wrangling with R and Python

Scripts distributed via Woodard & Curran Github!


Mann Kendall Trends (Mann Kendall automation presented at ICEDM 2022)

	Please note: If t	the data set	is not filtered there ma	av not be enough m	emory to display this matrix.		StationTypeCode
ndividual Well Summary	i icase noter ii t	ine data bet	is not intered, there int	iy not be enough in			All
ndividual Analyte Summary	WellName	Total VOCs	Total VOCs excluding Freor	113 Total VOCs exclud	ng TCA Total VOCs excluding TCA and Freon 113	^	
	1010007-00	19/0	10/75				Location
Map of Total VOC Exceedances	MW07-07R	No Trend	Decreasing	No Trend	No Trend		
	MW07-10	N/A	N/A	N/A	N/A		All
fotal VOCs Chart	MW07-102	N/A	N/A	N/A	N/A		
	MW07-103	N/A	N/A	N/A	N/A		CurrentStatusCode
ndividual Analyte Chart	MW07-104	N/A	N/A	N/A	N/A		
	MW07-105	N/A	N/A	N/A	N/A		All
Analytical Results Table	MW07-11D	N/A	N/A	N/A	N/A		
Analytical Results Table	MW07-11S	N/A	N/A	N/A	N/A		WellName
Degradation Summary	MW07-201	No Trend	No Trend	No Trend	No Trend		
Degradation Summary	MW07-202	No Trend	No Trend	No Trend	No Trend		All
PCE TCE DCE and VC Degradation	MW07-203	No Trend	No Trend	No Trend	No Trend		
FOR THE DOE and VC Degradation	MW07-204D	N/A	N/A	N/A	N/A		AnalyticMethod
Sample Frequency	MW07-204I	N/A	N/A	N/A	N/A		All
sample Frequency	MW07-204S	No Trend	No Trend	No Trend	No Trend		
MK Summer Matrix Concentrati	MW08-01D	Stable	No Trend	Stable	No Trend		Constituent
MK Summary Matrix - Concentrati	MW08-01S	No Trend	No Trend	No Trend	No Trend		oonstituent
	MW08-02	No Trend	No Trend	No Trend	No Trend		Multiple selections
MK Summary Matrix - Molarity	MW08-03S	N/A	N/A	N/A	N/A		
	MW08-303	N/A	N/A	N/A	N/A		
MK Summary Matrix Pield Param	MW08-403	N/A	N/A	N/A	N/A		SumCategory
	MW08-410	N/A	N/A	N/A	N/A		
	MW09-201	No Trend	No Trend	No Trend	No Trend		All
	MW09-202	No Trend	Increasing	No Trend	Increasing		
	MW09-204	Stable	Stable	Stable	Stable		
1	MW10-101	N/A	N/A	N/A	N/A		
1	MW10-102	N/A	N/A	N/A	N/A		
1	MW10-103	Stable	Potentially Increasing	Stable	Potentially Increasing		
	MW10-104	N/A	N/A	N/A	N/A	~	
1	MW10-105	Stable	Stable	Stable	Stable		

For total VOCs, the trends were assessed based on the totaled mass of analytes instead of concentrations.

Nearby Wells with Similar Screen Interval

Woodard & Curran

Nearby Wells with Similar Screen Interval

Used an R script to return the following information:

- Nearest Active Well
- The distance to that well
- The screen interval of that well (to easily double check it overlaps)
- ► The number and names of active wells within 50 ft
- The number and names of all Site wells that have been within 50 ft

A	В	с	D	E	F	G	н	1	J	к	L	м	N
								DistanceToNearest	NearestActiveWel	II NumActiveWells		NumWellsIr	1
OldName	 Location_CX 	Location_CY	 GroundElevation 	 ScreenedElevation 	 ScreenTop 	ScreenBase 💌	NearestActiveWell	ActiveWellFt 🛛 👻	ScreenInterval	v In50ft	ActiveWellsIn50ft 🔻	50ft 💌	WellsIn50ft
GZ-104	712702.75	3047559.32	129.02	(89.02 - 84.02 ft)	40	45	MW14-01	511.0190225	30 - 55 ft (100.51 - 1	750	(ft)	0	(ft)
GZ-119R	712772.89	3047629.11	128.17	(83.17 - 78.17 ft)	45	50	MW15-12	744.1689775	45 - 50 ft (74.88 - 69	9. 0	(ft)	2	GZ-119 (7.66319124124669 ft), GZ-122 (35.4566242047828 ft)
MW07-06	712613.51	3047582.51	127.39	(97.39 - 92.39 ft)	30	35	NA	NA	NA	0	(ft)	0	(ft)
													PP-2D (30.017438265215 ft), PP-1D (46.3832135584939 ft), PF
PP-4D	712757.97	3047589.54	127.46	(97.46 - 92.46 ft)	30	35	NA	NA	NA	0	(ft)	4	41.4322869268026 ft)
GZ-116	712828.11	3047629.57	127.32	(102.32 - 92.32 ft)	25	35	MW14-01	529.13517	30 - 55 ft (100.51 - 3	75 O	(ft)	1	PP-1D (47.3012219714629 ft)
GZ-103	712690.78	3047660.42	129.02	(89.02 - 84.02 ft)	40	45	MW14-01	418.2128885	30 - 55 ft (100.51 - 7	750	(ft)	0	(ft)
PP-6D	712752.82	3047608.81	127.73	(95.73 - 85.73 ft)	32	42	MW12-08B	786.9459916	37 - 47 ft (67.2 - 57.	.2 0	(ft)	1	MW02-13 (19.2135629180699 ft)
GZ-109	712710.94	3047712.73	129.37	(89.37 - 84.37 ft)	40	45	MW14-01	388.6297331	30 - 55 ft (100.51 - 1	750	(ft)	1	GZ-120 (42.9684372534382 ft)
GZ-106	712838.49	3047527.03	124.38	(84.38 - 79.38 ft)	40	45	MW14-01	613.1235276	30 - 55 ft (100.51 - 1	750	(ft)	0	(ft)
TGG-6	712796.29	3047717.93	NA	No GSE to calc elevation	on 10	20	MW92-9R	649.0061521	5 - 15 ft (121.06 - 11	110	(ft)	0	(ft)
MW01-02	712930.13	3047633.36	125.95	(90.95 - 80.95 ft)	35	45	MW07-204D	944.7819195	40 - 45 ft (62.95 - 5	7. 0	(ft)	1	MW01-01 (48.321157107947 ft)
													GZ-119R (32.4011628651353 ft), MW99-4R (24.515181724824
GZ-115C	712740.52	3047627.69	128.45	(88.45 - 78.45 ft)	40	50	MW15-12	714.2421449	45 - 50 ft (74.88 - 69	9. 0	(ft)	4	40.513149137247 ft)
MW01-01	712881.89	3047630.55	126.47	(91.47 - 81.47 ft)	35	45	MW07-204D	905.4975425	40 - 45 ft (62.95 - 5	7. 0	(ft)	2	MW01-02 (48.321157107947 ft), GZI-2 (45.5518600525936 ft)
MW02-12A	712746.00	3047589.55	127.87	(109.87 - 104.87 ft)	18	23	NA	NA	NA	0	(ft)	0	(ft)
GZ-108	712773.22	3047668.87	128.90	(88.9 - 83.9 ft)	40	45	MW14-01	462.8196017	30 - 55 ft (100.51 - 1	750	(ft)	2	GZ-120 (34.5121572782072 ft), GZI-4 (22.392829209546 ft)
GZ-120	712749.65	3047694.08	129.19	(89.19 - 84.19 ft)	40	45	MW14-01	428.3077181	30 - 55 ft (100.51 - 1	750	(ft)	2	GZ-109 (42.9684372534382 ft), GZ-108 (34.5121572782072 ft)
MW06-09	712708.50	3047592.57	128.27	(85.27 - 80.27 ft)	43	48	NA	NA	NA	0	(ft)	1	MW06-10 (35.3640636804888 ft)
MW07-05	712663.14	3047621.83	127.71	(99.71 - 94.71 ft)	28	33	NA	NA	NA	0	(ft)	0	(ft)
MW06-10	712743.21	3047599.34	127.93	(84.93 - 79.93 ft)	43	48	NA	NA	NA	0	(ft)	1	MW06-09 (35.3640636804888 ft)

Automated Summary Statistics Sitewide Review of Individual Analyte

Power BI DAX Expressions were built to calculate statistics from script-generated input file.

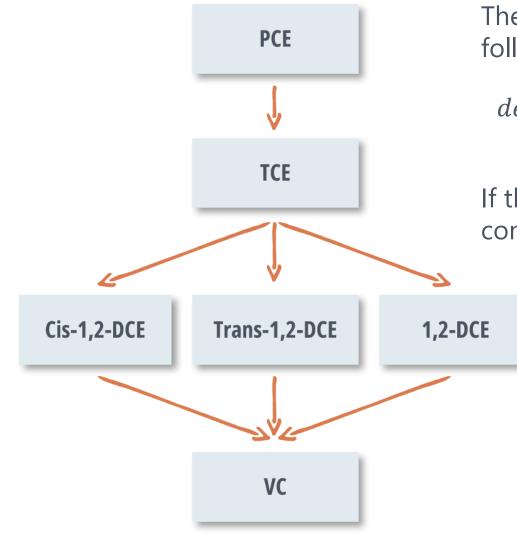
Measures allowed dynamic recalculations

Constituent				✓ State	tionTypeCo	ode	Currer	ntStatusCode \sim		WellName			Locati	on		
Total VOCs] - • • •	\sim	All	\sim		All	/		All			\sim
SampleDate	_D					ScreenTo	op				✓ Scre	enBase	2			\sim
Last	~ 1		Select		\sim	0.00	6	9.00			0.0	0	99.00			
🗟 No filters ap	plied					\frown				(\ \				\frown
~						\bigcirc)—				-0
															\mathbf{Y}	63
Well	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Number of Samples	Frequency of Detection	of _Frequ	uencyAbove	5000ppb	Most Recent Sample		_MostRecentValue	Min		Max	Average	Standard Dev	
MW17-02	20.00	30.00	0 19	94.74%	31.589	%		8/1/2022 3:55:00 PM		823.40			13,911,898.00	609,772.20	2,836,027.08	
MW16-20	15.00	25.00	0 24	100.00%	45.839	%		8/2/2022 2:30:00 PM		454.00	39	7.20	2,797,795.00	113,622.08	536,888.40	
C9 20			1	100.00%	100.00	0%		6/25/2020 12:30:00 P	РМ	1,466,500.00	1,466,50	0.00	1,466,500.00	1,466,500.00	0.00	
B10 20			1	100.00%	100.00	0%		7/1/2020 10:30:00 AM	М	1,178,000.00	1,178,00	0.00	1,178,000.00	1,178,000.00	0.00	
SWEW-A1	9.50	29.50	0 12	100.00%	16.679	%		1/20/2021 9:35:00 AM	М	0.33		0.33	1,165,164.00	97,863.93	321,806.05	
MW08-403	32.00	47.00	D 5	100.00%	100.00	0%		9/25/2017 1:33:00 PM	M	802,300.00	802,30	0.00	1,134,900.00	1,021,844.00	118,461.91	
MW12-03	44.00	49.00	0 7	100.00%	100.00	0%		4/5/2017 10:13:00 AM	М	556,600.00	263,20	0.00	912,000.00	612,357.14	194,331.87	
MW08-303	32.00	47.00	D 1	100.00%	100.00	0%		4/10/2018 11:10:00 A	٩M	880,000.00	880,00	0.00	880,000.00	880,000.00	0.00	
C8 20			1	100.00%	100.00	0%		6/25/2020 10:15:00 A	٩M	721,000.00	587,80	0.00	721,000.00	654,400.00	66,600.00	
MW07-103	42.50	47.50	0 8	100.00%	100.00	0%		9/25/2017 10:45:00 A	٩M	242,100.00	242,10	0.00	632,630.00	431,782.50	136,135.40	
MW16-57	20.00	30.00	0 22	100.00%	13.649	%		8/2/2022 3:25:00 PM		1,735.70	36	5.40	457,757.29	22,100.45	90,891.69	
D9 20			1	100.00%	100.00	0%		6/29/2020 10:30:00 A	٩M	340,900.00	340,90	0.00	340,900.00	340,900.00	0.00	
MW18-04	15.00	20.00	0 5	100.00%	80.009	%		4/9/2020 1:17:00 PM		156,482.70	1,36	1.00	311,100.00	101,587.88	119,033.30	
MW13-18	65.00	75.00	D 1	100.00%	100.00	0%		4/10/2014 9:50:00 AM	М	262,974.00	262,97	4.00	262,974.00	262,974.00	0.00	
MW12-04	48.00	52.00	0 4	100.00%	100.00	0%		9/21/2016 11:42:00 A	٩M	129,420.00	122,55	3.30	197,510.00	153,735.83	30,071.76	
MW12-01A	7.00	20.00	0 24	100.00%	54.179	%		9/23/2022 11:10:00 A	٩M	38.44	3	8.44	168,810.00	44,758.64	50,722.18	
MW09-01	0.00	0.00	0 11	100.00%	100.00	0%		7/13/2016 8:50:00 AM	М	26,510.00	21,63	0.00	148,000.00	64,805.83	41,271.70	
MW06-05	14.00	24.00	D 11	100.00%	100.00	0%		7/13/2016 9:30:00 AM	М	11,081.00	11,08	1.00	145,000.00	36,152.00	36,648.43	
MW06-07S	16.00	26.00	0 13	100.00%	92.319	%		9/10/2020 3:10:00 PN	Μ	11,937.00	1,30	0.00	128,000.00	34,392.85	32,595.99	
MW07-202	21.00	27.00	0 24	100.00%	50.009	%		9/23/2022 10:30:00 A	٩M	24.73	2	2.84	121,500.00	28,690.88	39,024.62	
SB 20-09			1	100.00%	100.00	0%		1/28/2021 12:00:00 A	٩M	114,000.00	114,00	0.00	114,000.00	114,000.00	0.00	Ŷ

Woodard & Curran

Automated Summary Statistics Review of analyte concentrations at an individual well

	Pages «	🗅 File 🗸	↦ Export ∽ 🖻 Shai	e 🖸 Chat in Teams	Q e	et insights 🛛 🕞 Subscribe	to report 🛛 🖉 Edit				() ↓ ~ □ ·	- C 🖓	
	Spatial Summary	Stati	onName	\sim									
		10100	-101	v									
	Summary Statistics			- 67									
	Temp Avg Map	CASNumber	Analyte	່ NumDetects NumAnaly	zed Fr	requency Detected NumExceed	d Frequency Exceeded	Min_Detect	Max_Detect	Average	Most Recent Exceedance		
	1 5 1	7440-66-6	Zinc, Total	3	3	100%	3 100.00%		363.00		3/7/2013 11:25:00 AM		
		7429-90-5	Aluminum, Total	3	3	100%	1 33.33%	60.10	1,440.00	551.37	3/7/2013 11:25:00 AM		
Yellow-hi	ghlighted	7440-66-6	Zinc, Dissolved	1	1	100%	1 100.00%	142.00	142.00	142.00	3/7/2013 11:25:00 AM		l
	have been	117-81-7	bis(2-Ethylhexyl)phthalate	2	6	33%	0.00%	1.04	6.65	3.99			
-		67-64-1	Acetone	1	5	20%	0.00%	6.00	6.00	3.10			
detected	at least	7429-90-5	Aluminum, Dissolved	1	1	100%	0.00%	63.30	63.30	63.30			
		7439-89-6	Iron, Dissolved	1	1		0.00%		35.60	35.60			
once at a	aiven	7439-89-6	Iron, Total	5	5		0.00%		790.00	328.24			
	5	7440-02-0	Nickel, Dissolved	1	1		0.00%		5.18	5.18			
location.		7440-02-0	Nickel, Total	3	3		0.00%		10.60	8.96			
		7440-39-3	Barium, Dissolved	1	1		0.00%		34.70	34.70			
		7440-39-3	Barium, Total	6	6		0.00%	34.80	59.60	44.10			
		100-01-6	4-Nitroaniline 4-Nitrophenol	0	6 6	0%				6.71 7.54			
		100-02-7	4-Nitrophenoi Ethylbenzene	0	5	0%				1.20			
		100-41-4	Styrene	0	5	0%				1.20			
		10061-01-5		0	4	0%				1.38			
		10061-02-6		0	4	0%				1.38			
		101-55-3	4-Bromophenyl-phenylether	0	6	0%				3.96			
		101-77-9	4,4'-Methylene dianiline	0	4	0%				3.19			
		103-65-1	N-Propylbenzene	0	5	0%				1.20			
		104-51-8	n-Butylbenzene	0	5	0%				1.20			
		105-67-9	2,4-Dimethylphenol	0	6	0%				3.96			



Automated Summary Statistics <u>Review of analyte concentrations at an individual well</u>

	Pages	«	🗋 File 🗸	↦ Export × 🖻 Sha	are 🛛 📆 Chat in T	ēams 🛛 Get	insights 🛛 🔂 Sub	scribe to re	port 🖉 Edit ᠂	•••		5 🛛	
			Stati	onName									
	Spatial Summary		MW-	-101	\sim								
	Summary Statistics												
	Summary Statistics				= 67								
			CASNumber	Analyte	NumDetects Nu	ımAnalyzed Frequ	ency Detected Nun	nExceed Free	quency Exceeded M	lin_Detect N	/lax_Detect	Average Most Recent Exce	edance
Red text ir	ndicates		7440-66-6	Zinc, Total	3	3	100%	3	100.00%	148.00	363.00	226.33 3/7/2013 11:25:00	AM
			7429-90-5	Aluminum, Total	3	3	100%	1	33.33%	60.10	1,440.00	551.37 3/7/2013 11:25:00	AM
the analyte	e nas		L	Zinc, Dissolved	1	1	100%	1	100.00%	142.00	142.00	142.00 3/7/2013 11:25:00	AM
exceeded			117-81-7	bis(2-Ethylhexyl)phthalate	2	6	33%	0	0.00%	1.04	6.65	3.99	
			67-64-1	Acetone	1	5	20%	0	0.00%	6.00	6.00	3.10	
applicable	e criteria		7429-90-5 7439-89-6	Aluminum, Dissolved	1	1	100% 100%	0	0.00%	63.30	63.30 35.60	63.30 35.60	
			7439-89-6	Iron, Total	5	5	100%	0	0.00%	35.60 40.00	790.00	328.24	
at least on	ice.		7440-02-0	Nickel, Dissolved	1	1	100%	0	0.00%	5.18	5.18	5.18	
			7440-02-0	Nickel, Total	3	3	100%	0	0.00%	7.40	10.60	8.96	
			7440-39-3	Barium, Dissolved	1	1	100%	0	0.00%	34.70	34.70	34.70	
			7440-39-3	Barium, Total	6	6	100%	0	0.00%	34.80	59.60	44.10	
			100-01-6	4-Nitroaniline	0	6	0%					6.71	
			100-02-7	4-Nitrophenol	0	6	0%					7.54	
			100-41-4	Ethylbenzene	0	5	0%					1.20	
			100-42-5	Styrene	0	5	0%					1.20	
			10061-01-5		0	4	0%					1.38	
				trans-1,3-Dichloropropene	0	4	0%					1.38	
			101-55-3	4-Bromophenyl-phenylethe		6	0%					3.96	
			101-77-9	4,4'-Methylene dianiline	0	4	0%					3.19	
			103-65-1 104-51-8	N-Propylbenzene n-Butylbenzene	0	5	0%					1.20	
			104-51-8	2,4-Dimethylphenol	0	6	0%					3.96	
			103-07-9	2,4-Dimetryiphenoi	0	0	070					5.90	

Extent of Degradation

Woodard & Curran

The extent of degradation was calculated using the following equation:

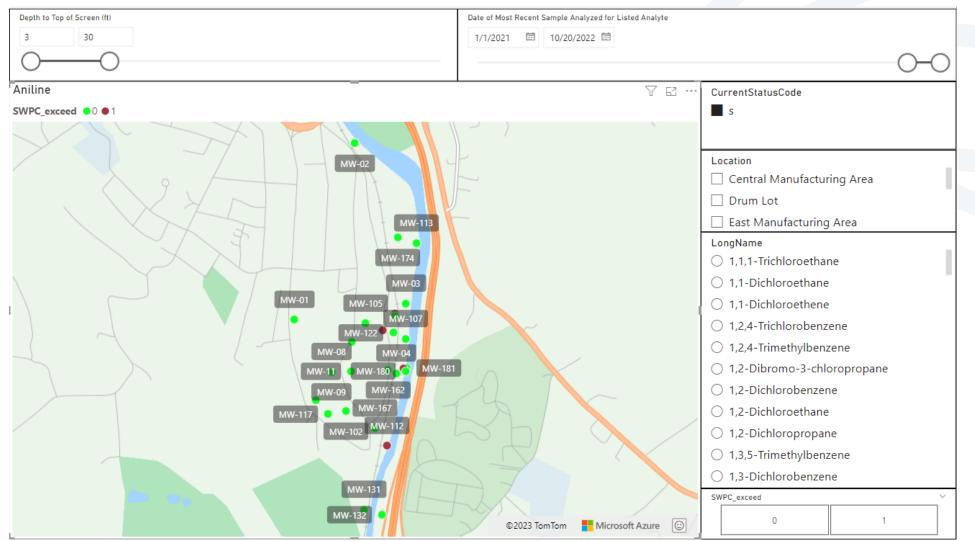
 $degradation = \frac{molarity \, of \, degradation \, by - products}{molarity \, of \, original \, compound}$

If the degradation ratio is **greater than one**, the compound is considered to be degrading at that well.

Extent of Degradation – Power BI Display

WellName	Latest SampleDate_D	_Percent_TCE_Degradation	_Percent_TCA_Degrac 🖉 🖯 🔍	- 63
MW18-01	11/19/2018 9:59:00 AM	95.62	0.75	
MW-22	10/3/2019 9:35:00 AM	77.59	5.48	
MW02-4	4/10/2018 3:25:00 PM	75.58	14.87	
MW08-03D	9/20/2016 1:33:00 PM	66.55	Infinity	
MW15-07	9/21/2022 2:00:00 PM	64.86	6.08	
MW17-01S	8/2/2022 12:55:00 PM	63.56	14.13	
MW13-11	9/26/2016 1:30:00 PM	57.32	1.16	
MW10-103	9/23/2022 2:30:00 PM	50.91	4.75	
MW-20C	9/21/2022 11:50:00 AM	47.65	Infinity	
MW02-13	4/18/2019 4:15:00 PM	42.59	0.51	
MW09-202	9/23/2022 2:35:00 PM	37.48	12.00	
MW99-2D	4/10/2014 11:35:00 AM	37.37	3.67	
MW99-10	9/21/2022 12:35:00 PM	36.43	1.94	
MW92-4	9/20/2022 2:55:00 PM	35.83	Infinity	
MW15-08	9/21/2022 8:40:00 AM	30.62	10.70	
GZ-119R	9/22/2016 9:43:00 AM	26.54	0.50	
MW-14C	5/18/2022 1:00:00 PM	26.39	Infinity	
MW13-13	9/26/2016 10:10:00 AM	23.80	0.00	
MW21-27	9/20/2022 10:20:00 AM	22.91	50.52	
MW16-09	8/1/2022 1:35:00 PM	21.82	6.40	
MW21-01	10/11/2021 12:00:00 AM	21.79	Infinity	
MW16-31	8/3/2022 12:25:00 PM	17.24	3.10	
MW16-25	9/28/2022 11:15:00 AM	16.13	1.55	
MW02-6	4/8/2015 3:00:00 PM	16.03	3.22	
MW08-410	9/25/2017 12:45:00 PM	15.91	9.27	
MW10-107R	4/9/2020 12:45:00 PM	14.51	2.28	
MW10-106DR	10/3/2019 9:35:00 AM	13.90	33.47	
MW07-201	9/23/2022 9:15:00 AM	13.03	117.99	
MW09-203	4/6/2016 10:45:00 AM	11.92	4.12	
PZ-605B	9/26/2017 1:40:00 PM	10.03	Infinity	
SWEW-B1	8/1/2022 11:35:00 AM	8.88	640.83	
MW10-105	4/15/2019 11:55:00 AM	8.25	17.98	
MW99-5	11/15/2016 12:00:00 AM	7.94	0.45	

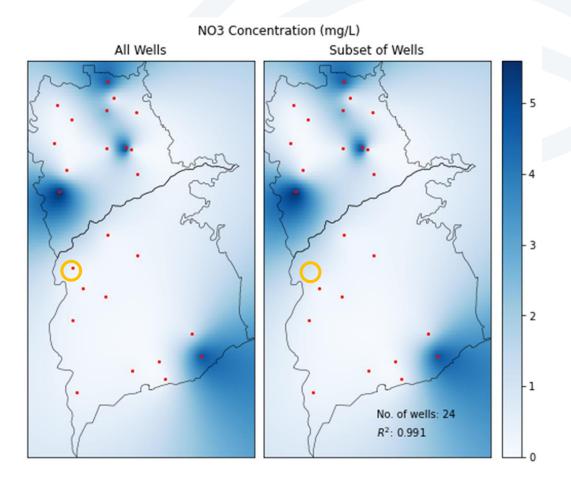
Woodard & Curran


	J (5)
SampleDate_D	
8/19/2011 🗉 10/24/2022 🗐	
0	
U	\bigcirc
WellName	StationTypeCode
	EW EW
AS18-01	
🗌 AS18-02	□ mw
AS18-03	
AS18-04	
AS18-05	

Power BI DAX Expressions were built to calculate ratios from scriptgenerated input file.

The input file stored concentration and molarity.

Regulatory Exceedance Map


Input data provided by Python script to evaluate last 4 samples collected from each well.

Contour Optimization

- Identify representative wells for longterm, basin-wide groundwater quality monitoring using spatial distribution
- Methodology:
 - 1. Create concentration contours based on the constituents' concentrations on each well
 - 2. Remove the well that provides the **least** amount of information to the contour for **all** constituents
 - 3. Repeat Step #2 and stop when a threshold is met

Yuba Subbasin – California

Contour Optimization

- Yuba Subbasin results:
 - From 55 wells, 26 wells were selected for long-term groundwater quality monitoring
 - Maintaining the spatial distribution of the constituents' concentration
- Tool provides flexibility
 - Can be applied to different subbasins
 - A subset of wells can be set as fixed
 - Wells that exceed Primary MCLs
- Provides a scientific base for establishing a high-quality, cost-effective regional groundwater quality monitoring network

Project Conclusions:

Site	% reduction in routine wells monitored	% of remaining wells with reduced sampling frequency	Hours of fieldwork saved per sampling event
Example Site #1	30	40	19
Example Site #2	40	0*	50–60

Notable cost savings

Increased project sustainability

Return on Investment from Scalable Tools


ΤοοΙ	Hours Saved (range from small to large	e site)
Mann Kendall	10–100	
Spatial Representation	2–200	
Summary Statistics	5-20	
Degradation Evaluation	10–100	

 Incorporate monitoring optimization tools into Power BI interface connected to multi-project Azure SQL Database

Questions?

September 12, 2023